On Quasi-Chebyshev Subspaces of Banach Spaces

H. Mohebi¹

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5 E-mail: mohebi@mscs.dal.ca

Communicated by Günther Nürnberger

Received April 6, 1999; accepted in revised form March 31, 2000; published online October 11, 2000

A quasi-Chebyshev subspace of a Banach space X has been defined as one in which the set of best approximants for every x in X is non-empty and compact. This generalizes the well known concept of pseudo-Chebyshev property. In this paper we shall give various characterizations of quasi-Chebyshev subspaces in Banach spaces. Moreover, we present a characterization of the spaces in which all closed linear subspaces are quasi-Chebyshev. © 2000 Academic Press

Key Words: proximinality; pseudo-Chebyshev subspace; quasi-Chebyshev subspace; reflexive Banach space; duality.

1. INTRODUCTION AND PRELIMINARIES

Let X be a (complex or real) Banach space and let W be a linear subspace of X. A point $y_0 \in W$ is said to be a best approximation for $x \in X$ if

$$||x - y_0|| = d(x, W) = \inf\{||x - y|| : y \in W\}$$

If each $x \in X$ has at least one best approximation in W, then W is called a proximinal subspace of X. If each $x \in X$ has a unique best approximation in W, then W is called a Chebyshev subspace of X. For $x \in X$, put

$$P_{W}(x) = \{ y \in W : ||x - y|| = d(x, W) \}$$

It is clear that $P_W(x)$ is a bounded, closed and convex subset of X. For an arbitrary non-empty covex set A in X, we shall denote by

$$\ell(A) = \{\alpha x + (1 - \alpha) \ y : x, y \in A; \alpha \text{ is scalar}\}$$

¹ Permanent address: Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran. E-mail: hmohebi@arg3.uk.ac.ir.

the linear manifold spanned by A. For every fixed $y \in A$ the set $\ell(A) - y = \{x - y : x \in \ell(A)\}$ is a linear subspace of X, satisfying $\ell(A - y) = \ell(A) - y$. The dimension of A is defined by dim $A = \dim \ell(A)$. Then, for every $y \in A$ we have

$$\dim A = \dim \ell(A) = \dim [\ell(A) - y] = \dim \ell(A - y) = \dim (A - y)$$

(For more details see [8].)

We say that W is a pseudo-Chebyshev subspace of X if $P_W(x)$ is a nonempty and finite-dimensional set in X for each $x \in X$.

In particular, every finite-dimensional linear subspace and every k-Chebyshev subspace (k = 0, 1, 2, ...) is pseudo-Chebyshev(for more details see [4, 8]). In [1] P. D. Morris has constructed examples of pseudo-Chebyshev subspaces of finite-codimensional of $\ell_{\mathbf{R}}^{\infty}$ which are not Chebyshev subspaces. In [7] there is a characterization of the spaces in which all closed linear subspaces are pseudo-Chebyshev.

A linear subspace W of a Banach space X is called quasi-Chebyshev if $P_W(x)$ is a non-empty and compact set in X for every $x \in X$ (see [2]). In [2] it is shown that every pseudo-Chebyshev subspace is quasi-Chebyshev, and given an example in which the converse is not true. For more details about quasi-Chebyshev subspaces see [2].

Let X^* be the dual space of the Banach space X. For $f \in X^*$, put

$$M_f = \{ x \in X \colon f(x) = ||f||, ||x|| = 1 \}$$

It is clear that M_f is a bounded and closed subset of X.

We conclude this section by a list of known lemmas needed in the proof of the main results.

LEMMA 1.1 [8, Theorem 1.1]. Let X be a normed linear space, W a linear subspace of X, $x \in X \setminus \overline{W}$ and $y_0 \in W$. Then $y_0 \in P_W(x)$ if and only if there exists $f \in X^*$ such that ||f|| = 1, f | W = 0 and $f(x - y_0) = ||x - y_0||$.

LEMMA 1.2 [5; 8, Theorems 1 and 4]. Let X be a normed linear space, W a linear subspace of X, $x \in X \setminus \overline{W}$ and $y_0 \in W$. Then $y_0 \in P_W(x)$ if and only if

$$\|x - y_0\|_{W^{\perp}} = \|x - y_0\|$$

where
$$||x||_{W^{\perp}} = \sup\{|f(x)| : ||f|| \leq 1, f \in W^{\perp}\}.$$

LEMMA 1.3 [6, 8]. Let X be a normed linear space, W a linear subspace of X, $x \in X \setminus \overline{W}$ and F a subset of W. Then F is a subset of $P_W(x)$ if and only

if there exists $f \in X^*$ *such that* ||f|| = 1, f|W = 0 *and* f(x - y) = ||x - y|| *for every* $y \in F$.

LEMMA 1.4 [2, Theorem 2.4]. Let X be a Banach space and let W be a proximinal subspace of X. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) There do not exist $f \in X^*$, $x_0 \in X$ and a sequence $\{x_n\}_{n \ge 1}$ in X without a convergent subsequence and with $x_0 - x_n \in W$ (n = 1, 2, ...) such that ||f|| = 1, f|W = 0 and $f(x_n) = ||x_n||$ for all n = 0, 1, 2, ...

(3) There do not exist $f \in X^*$, $x_0 \in X$ and a sequence $\{g_n\}_{n \ge 1}$ in W without a convergent subsequence such that ||f|| = 1, f | W = 0 and $f(x_0) = ||x_0|| = ||x_0 - g_n||$ for all n = 1, 2, ...

2. MAIN RESULTS

Now, we are ready to state and prove our main results. In the following we give various characterizations of quasi-Chebyshev subspaces in Banach spaces. First, we use Lemma 1.4 and give another proof of a result in [3].

THEOREM 2.1. Let X be a Banach space and let W be a proximinal subspace of X with codimension one. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) Each sequence $\{y_n\}_{n \ge 1}$ in X with $||y_n|| = 1$ and $0 \in P_W(y_n)$ (n = 1, 2, ...) has a convergent subsequence.

Proof. See Theorem 2.5 below.

In the following, we need the following definitions.

DEFINITION 2.2. A linear subspace W of a Banach space X is said to have the property (C), if for every $f \in W^*$ the set

$$\mathbf{E}_{f} = \{ \tilde{f} \in X^{*}: \tilde{f} \mid W = f, \|\tilde{f}\| = \|f\| \}$$

is non-empty and compact in X^* . (Note that $\mathbf{E}_{\mathbf{f}}$ is convex for every $f \in W^*$.)

DEFINITION 2.3. Let X be a Banach space. A linear subspace M of X^* is said to have the property (C^*) , if for every $x \in X \setminus M$ the set

$$\mathbf{D}_{\mathbf{x}} = \{ y \in X \colon f(y) = f(x) \text{ for all } f \in M; \|y\| = \|x\|_{M} \}$$

is non-empty and compact in X, where

$$^{L}M = \{ x \in X : f(x) = 0 \text{ for all } f \in M \}$$

and

$$||x||_M = \sup\{|f(x)| : ||f|| \le 1, f \in M\}$$

(Note that $\mathbf{D}_{\mathbf{x}}$ is convex for every $x \in X \setminus M$.)

THEOREM 2.4. Let X be a Banach space and let W be a proximinal subspace of X. Then the following are equivalent:

- (1) W is quasi-Chebyshev in X.
- (2) W^{\perp} has the property (C^*).

If the quotient space X/W is reflexive, then the above statements are equivalent to the following:

(3) For every $\Lambda \in (W^{\perp})^*$ the set

 $\mathbf{S}_{A} = \{ y \in X : f(y) = \Lambda(f) \text{ for all } f \in W^{\perp}; \|y\| = \|\Lambda\| \}$ is non-empty and compact in X. (Note that \mathbf{S}_{A} is convex for every $\Lambda \in (W^{\perp})^{*}$. Also, (3) implies (1) and (2) without the reflexivity of X/W.)

Proof. (1) \Rightarrow (2). Suppose that (2) does not hold. Since W is proximinal in X, by [8; Theorem 2.1] \mathbf{D}_x is non-empty for each $x \in X$. Then there exists $x_0 \in X \setminus W$ such that \mathbf{D}_{x_0} is not compact. It follows that there exists a sequence $\{y_n\}_{n \ge 1}$ in X without a convergent subsequence such that

$$f(y_n) = f(x_0), \qquad n = 1, 2, ...; f \in W^{\perp},$$

and

$$||y_n|| = ||x_0||_{W^{\perp}}, \quad n = 1, 2, ...,$$

Then we have $f(y_n - y_1) = 0$ for all $f \in W^{\perp}$ and all $n \ge 1$. Therefore, $y_n - y_1 \in {}^{\perp}(W^{\perp}) = W$ (n = 1, 2, ...), because W is a closed subspace of X. Let $y_0 = y_1$ and $g_n = y_{n+1} - y_1$, n = 1, 2, ... Thus, $y_0 \in X \setminus W$, $\{g_n\}_{n \ge 1}$ is a sequence in W without a convergent subsequence and

$$\begin{split} \|y_0 - g_n\| &= \|y_{n+1}\| = \|x_0\|_{W^{\perp}} \\ &= \sup\{|f(x_0)| : \|f\| \le 1, f \in W^{\perp}\} \\ &= \sup\{|f(y_1)| : \|f\| \le 1, f \in W^{\perp}\} \\ &= \|y_0\|_{W^{\perp}} = \|y_0 - g_n\|_{W^{\perp}}, \end{split}$$

for all n = 1, 2, ... It follows from Lemma 1.2 that $g_n \in P_W(y_0)$ for n = 1, 2, ... Therefore, $P_W(y_0)$ is not compact and hence W is not quasi-Chebyshev in X. Thus, (1) implies (2).

 $(2) \Rightarrow (1)$. Assume if possible that W is not quasi-Chebyshev in X. Since W is proximinal in X, by Lemma 1.4 (the implication $(1) \Rightarrow (3)$) for a suitable $f_0 \in X^*$ and $x_0 \in X \setminus W$ there exists a sequence $\{g_n\}_{n \ge 1}$ in W without a convergent subsequence such that $||f_0|| = 1, f_0 ||W=0$ and $f_0(x_0) = ||x_0|| = ||x_0 - g_n||, n = 1, 2, ...$ Since $x_0 \in X \setminus W$ and

$$f_0(x_0 - g_n) = f_0(x_0) = ||x_0 - g_n||,$$

for all n = 1, 2, ..., it follows from Lemma 1.3 that $g_n \in P_W(x_0)$ (n = 1, 2, ...). Then, by Lemma 1.2, we have

$$\|x_0 - g_n\| = \|x_0 - g_n\|_{W^{\perp}},$$

for all n = 1, 2, ...

Let $y_n = x_0 - g_n$, n = 1, 2, ... Therefore, $\{y_n\}_{n \ge 1}$ is a sequence in X without a convergent subsequence. Now, let $f \in W^{\perp}$ be arbitrary. Then we have

$$f(y_n) = f(x_0 - g_n) = f(x_0), \qquad n = 1, 2, ...,$$

and

$$\|y_n\| = \|x_0 - g_n\| = \|x_0 - g_n\|_{W^{\perp}} = \|x_0\|_{W^{\perp}},$$

for all n = 1, 2, It follows that $y_n \in \mathbf{D}_{\mathbf{x}_0}$ for all $n \ge 1$. Thus, W^{\perp} does not have the property (C^*). Hence, (2) implies (1).

 $(2) \Rightarrow (3)$. Assume that we have (2) and that the quotient space X/W is reflexive. Now, suppose that (3) does not hold. Since W is proximinal and X/W is reflexive, by [8; Theorem 2.1] \mathbf{S}_A is non-empty for every $A \in (W^{\perp})^*$. Then for a suitable $A_0 \in (W^{\perp})^*$, \mathbf{S}_{A_0} is not compact. It follows that there exists a sequence $\{y_n\}_{n \ge 1}$ in X without a convergent subsequence such that

$$f(y_n) = \Lambda_0(f), \qquad n = 1, 2, ...; f \in W^{\perp},$$

and

$$||y_n|| = ||A_0||, \quad n = 1, 2,$$

Now, let $x_0 = y_1 \in X$. Then we have

$$f(y_n) = f(x_0), \qquad n = 1, 2, ...; f \in W^{\perp},$$

92

$$\begin{split} \|y_n\| &= \|A_0\| = \sup\{|A_0(f)| : \|f\| \le 1, f \in W^{\perp}\}\\ &= \sup\{|f(y_n)| : \|f\| \le 1, f \in W^{\perp}\}\\ &= \sup\{|f(x_0)| : \|f\| \le 1, f \in W^{\perp}\}\\ &= \|x_0\|_{W^{\perp}}, \end{split}$$

for all n = 1, 2, ... It follows that $y_n \in \mathbf{D}_{\mathbf{x}_0}$ for all $n \ge 1$. Then W^{\perp} does not have the property (C^*). Hence, (2) implies (3).

 $(3) \Rightarrow (1)$. Suppose that W is not quasi-Chebyshev in X. Then by the proof $(2) \Rightarrow (1)$ we can find $x_0 \in X \setminus W$ and a sequence $\{y_n\}_{n \ge 1}$ in X without a convergent subsequence such that

$$f(y_n) = f(x_0), \qquad n = 1, 2, ...; f \in W^{\perp},$$

and

$$||y_n|| = ||x_0||_{W^{\perp}}, \quad n = 1, 2, ...$$

Now, define $\Lambda_0: W^{\perp} \to \mathbb{C}$ by $\Lambda_0(f) = f(x_0)$ for every $f \in W^{\perp}$. It follows that $\Lambda_0 \in (W^{\perp})^*, f(y_n) = \Lambda_0(f)$ $(n = 1, 2, ...; f \in W^{\perp})$ and $||\Lambda_0|| = ||x_0||_{W^{\perp}} = ||y_n||$ fo all n = 1, 2, ... Then $y_n \in \mathbb{S}_{\Lambda_0}$ for n = 1, 2, ... Therefore, (3) does not hold. Hence (3) implies (1), which completes the proof.

THEOREM 2.5. Let X be a Banach space and let W be a proximinal subspace of X. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) In every linear subspace $Y_x \subset X$ ($x \in X \setminus W$) of the form $Y_x = W \oplus \langle x \rangle$ each sequence $\{y_n\}_{n \ge 1}$ in Y_x with $||y_n|| = 1$ and $0 \in P_W(y_n)$ (n = 1, 2, ...) has a convergent subsequence.

(3) For every linear functional $0 \neq \varphi \in (Y_x)^*$ $(x \in X \setminus W)$ with the property $W = \{y \in Y_x : \varphi(y) = 0\}$, the set $M_{\varphi} = \{y \in Y_x : \varphi(y) = \|\varphi\|, \|y\| = 1\}$ is non-empty and compact in Y_x .

(4) W^{\perp} has the property (C^*).

If the quotient space X/W is reflexive, then the above statements are equivalent to the following:

(5) For every
$$\Lambda \in (W^{\perp})^*$$
 the set

$$\mathbf{S}_{\mathcal{A}} = \left\{ y \in X \colon f(y) = \mathcal{A}(f) \text{ for all } f \in W^{\perp}, \|y\| = \|\mathcal{A}\| \right\}$$

is non-empty and compact in X.

Proof. (1) \Rightarrow (2). Suppose that *W* is quasi-Chebyshev in *X*. Then *W* is quasi-Chebyshev in every Y_x ($x \in X \setminus W$). Since codim W = 1 in each Y_x ($x \in X \setminus W$), by Theorem 2.1 (the implication (1) \Rightarrow (2)) each sequence $\{y_n\}_{n \ge 1}$ in Y_x with $||y_n|| = 1$ and $0 \in P_W(y_n)$ (n = 1, 2, ...) has a convergent subsequence. Hence we have (2).

 $(2) \Rightarrow (1)$. Assume that we have (2). Then codim W = 1 in each subspace $Y_x \subset X$ ($x \in X \setminus W$) of the form $Y_x = W \oplus \langle x \rangle$. Since W is proximinal in each Y_x ($x \in X \setminus W$), it follows from Theorem 2.1 (the implication $(2) \Rightarrow (1)$) that W is quasi-Chebyshev in each Y_x ($x \in X \setminus W$). But, $X = \bigcup_{x \in X \setminus W} Y_x$. It is clear that W is quasi-Chebyshev in X, and hence we have (1).

 $(3) \Rightarrow (2)$. Suppose that (2) does not hold. Then for a suitable $Y_{x_0} \subset X$ $(x_0 \in X \setminus W)$ of the form $Y_{x_0} = W \oplus \langle x_0 \rangle$ there exists a sequence $\{y_n\}_{n \ge 1}$ in Y_{x_0} without a convergent subsequence such that $||y_n|| = 1$ and $0 \in P_W$ (y_n) (n = 1, 2, ...). It follows that $y_n \in Y_{x_0} \setminus W$ for all n = 1, 2, Therefore, by Lemma 1.1, for each n = 1, 2, ... there exists $o \neq \varphi_n \in (Y_{x_0})^*$ such that $||\varphi_n|| = 1$. $||\varphi_n|| = 1$, $||\varphi_n|| = 0$ and $||\varphi_n|| = 1$. Let $||\varphi_0| = ||\varphi_0| = ||\varphi_0|$ and $||\varphi_0|| = 1$.

$$W_0 = \{ y \in Y_{x_0} : \varphi_0(y) = 0 \}.$$

Since $\varphi_0(x_0) \neq 0$, it follows that $Y_{x_0} = W_0 \oplus \langle x_0 \rangle$. But, we have $Y_{x_0} = W \oplus \langle x_0 \rangle$ and W is a subset of W_0 . Then $W = W_0$. Thus, we have $0 \neq \varphi_0 \in (Y_{x_0})^*$ with the property $W = \{y \in Y_{x_0} : \varphi_0(y) = 0\}$. Now, since $\varphi_n \mid W = 0 \quad (n = 1, 2, ...)$, there exists a non-zero scalar α_n such that $\varphi_n = \alpha_n \varphi_0 \quad (n = 1, 2, ...)$. But, we have $\|\varphi_n\| = 1$ for all n = 1, 2, Then $|\alpha_n| = 1 \quad (n = 1, 2, ...)$. We may assume without loss of generality that $\alpha_n \to \alpha_0$ for some scalar $\alpha_0 \neq 0 \quad (|\alpha_0| = 1)$.

Let $x_n = \alpha_n y_n$, n = 1, 2, ... Now, since $\alpha_n \to \alpha_0 \neq 0$, it follows that $\{x_n\}_{n \ge 1}$ is a sequence in Y_{x_0} without a convergent subsequence, $||x_n|| = 1$ (n = 1, 2, ...), and

$$\varphi_0(x_n) = \varphi_0(\alpha_n y_n) = \alpha_n \varphi_0(y_n) = \varphi_n(y_n) = 1 = \|\varphi_0\|,$$

for all n = 1, 2, ...

Therefore, $x_n \in M_{\varphi_0}$ (n = 1, 2, ...). Then M_{φ_0} is not compact and (3) does not hold. Hence, (3) implies (2).

(4) \Rightarrow (3). Suppose that (3) does not hold. Since W is proximinal in X, by [8; Theorem 2.1] for every $0 \neq \varphi \in (Y_x)^*$ $(x \in X \setminus W)$ with the property $W = \{ y \in Y_x : \varphi(y) = 0 \}$, M_{φ} is non-empty. Then for a suitable $Y_{x_0} \subset X$ $(x_0 \in X \setminus W)$ there exists $0 \neq \varphi_0 \in (Y_{x_0})^*$ with the property $W = \{ y \in Y_{x_0} : \varphi_0(y) = 0 \}$, M_{φ_0} is not compact. It follows that there exists a sequence $\{ y_n \}_{n \ge 1}$ in Y_{x_0} without a convergent subsequence such that $\| y_n \| = 1$ and $\varphi_0(y_n) = \| \varphi_0 \|$ (n = 1, 2, ...).

H. MOHEBI

Since $y_n \in Y_{x_0} \setminus W$ (n = 1, 2, ...), for each n = 1, 2, ... there exist a non-zero scalar λ_n and an $w_n \in W$ such that $y_n = w_n + \lambda_n x_0$ (note that $Y_{x_0} = W \oplus \langle x_0 \rangle$). But, we have $\varphi_0(y_n) = \|\varphi_0\|$ (n = 1, 2, ...) and $\varphi_0(x_0) \neq 0$. Then $\lambda_n = \|\varphi_0\|$ $(\varphi_0(x_0))^{-1} := \lambda_0$ for all n = 1, 2, ... (Note that $\lambda_0 \neq 0$.) Now, let $x_n = \lambda_0^{-1} y_n$, n = 1, 2, ... It follows that $\{x_n\}_{n \ge 1}$ is a sequence

Now, let $x_n = \lambda_0^{-1} y_n$, n = 1, 2, ... It follows that $\{x_n\}_{n \ge 1}$ is a sequence in Y_{x_0} without a convergent subsequence, $|\varphi_0(x_n)| = \|\varphi_0\| \|x_n\|$ and $x_n - x_0 \in W$ for all n = 1, 2, ... Let $f \in W^{\perp}$ be arbitrary. Since $x_n - x_0 \in W$ $(n = 1, 2, ...), f(x_n) = f(x_0)$ and $\varphi_0(x_n) = \varphi_0(x_0)$ for all n = 1, 2, ... (note that $\varphi_0 \mid W = 0$).

Let $\psi_0 = (\|\varphi_0\|)^{-1} \varphi_0$. Then we have $\|\psi_0\| = 1, \psi_0 | W = 0, \psi_0(x_n) = \psi_0(x_0)$ and $|\psi_0(x_n)| = \|x_n\|$ (n = 1, 2, ...). Therefore,

$$\begin{split} \|x_n\| &= |\psi_0(x_n)| = |\psi_0(x_0)| \\ &\leq \sup\{|f(x_0)| \colon \|f\| \leq 1, f \in W^{\perp}\} = \|x_0\|_{W^{\perp}}, \end{split}$$

for all n = 1, 2, ...

On the other hand,

$$\begin{split} \|x_0\|_{W^{\perp}} &= \sup\{|f(x_0)| : \|f\| \le 1, f \in W^{\perp}\} \\ &= \sup\{|f(x_n)| : \|f\| \le 1, f \in W^{\perp}\} \le \|x_n\|, \end{split}$$

for all n = 1, 2, Then $||x_n|| = ||x_0||_{W^{\perp}}$, n = 1, 2, Since $f(x_n) = f(x_0)$, $n = 1, 2, ...; f \in W^{\perp}$, it follows that $x_n \in \mathbf{D}_{x_0}$ (n = 1, 2, ...) and hence W^{\perp} does not have the property (C^*). Thus, (4) implies (3).

The equivalences $(1) \Leftrightarrow (4) \Leftrightarrow (5)$ have been proved in Theorem 2.4, which completes the proof.

Now, we shall obtain from Theorem 2.5 the following corollary on quasi-Chebyshev subspaces of Banach spaces.

COROLLARY 2.6. Let X be a reflexive Banach space. Then all closed linear subspaces of X are quasi-Chebyshev if and only if for every $f \in X^*$ and every closed linear subspace W of X with $f \mid W$ is non-zero, the set $M_g =$ $\{y \in W : g(y) = ||g||, ||y|| = 1\}$ is non-empty and compact, where $g = f \mid W$.

Proof. Assume that all closed linear subspaces of X are quasi-Chebyshev. Let $f \in X^*$ be arbitrary and let W be an arbitrary closed linear subspace of X such that f | W is non-zero. Let g = f | W. Since $g \neq 0$, there exists $x_0 \in W$ such that $g(x_0) \neq 0$.

Now, let

$$W_0 = \{ y \in W : g(y) = 0 \}$$
 and $Y_{x_0} = W_0 \oplus \langle x_0 \rangle$.

Then we have $W = Y_{x_0}$ and by hypothesis W_0 is a quasi-Chebyshev subspace of X. Since $g \in W^* = (Y_{x_0})^*$ $(x_0 \in X \setminus W_0)$ with the property $W_0 = \{y \in Y_{x_0}: g(y) = 0\}$ and W_0 is quasi-Chebyshev in X, by Theorem 2.5 (the implication $1 \Rightarrow 3$)) the set M_g is non-empty and compact in $Y_{x_0} = W$.

Conversely, suppose that for every $f \in X^*$ and every closed linear subspace W of X with f | W is non-zero, the set M_g is non-empty and compact, where g = f | W. Let W be an arbitrary closed linear subspace of X.

Now, let $x \in X \setminus W$ be arbitrary and $Y_x = W \oplus \langle x \rangle$. It is clear that Y_x is a closed linear subspace of X. Let $0 \neq \varphi \in (Y_x)^*$ be arbitrary with the property

$$W = \{ y \in Y_x : \varphi(y) = o \}.$$

Therefore, by Hahn-Banach Theorem, there exists a linear functional $f \in X^*$ such that $0 \neq \varphi = f \mid Y_x$. It follows, by hypothesis, that M_{φ} is a nonempty and compact set in Y_x . But, we have X is reflexive. Then by [8; Corollary 2.4] W is proximinal in X. Hence by Theorem 2.5 (the implication 3) \Rightarrow 1)) W is quasi-Chebyshev in X, which completes the proof.

ACKNOWLEDGMENTS

The author express his gratitude to the referees for their helpful suggestions concerning the final version of this paper.

REFERENCES

- P. D. Morris, Metric projections onto subspaces of finite codimension, *Duke Math. J.* 35 (1968), 799–808.
- 2. H. Mohebi and H. Radjavi, On compactness of the best approximant set, to appear.
- I. Singer, "On Set-Valued Metric Projections, Linear Operators and Approximation," pp. 217–233, Birkhäuser Verlag, Basel/Stuttgart, 1972, 217–233.
- I. Singer, On the set of the best approximations of an element in a normed linear space, *Rev. Math. Pures Appl.* 5 (1960), 383–402.
- 5. I. Singer, Some remarks on best approximation in normed linear spaces, I, *Rev. Math. Pures Appl.* 6 (1961), 357–362.
- I. Singer, On best approximation of continuous functions, II, Rev. Math. Pures Appl. 6 (1961), 507–511.
- 7. I. Singer, The theory of best approximation and functional analysis, *Regional Conf. Ser. Appl. Math.* **13** (1974).
- I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin, 1970.