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A quasi-Chebyshev subspace of a Banach space X has been defined as one in
which the set of best approximants for every x in X is non-empty and compact.
This generalizes the well known concept of pseudo-Chebyshev property. In this
paper we shall give various characterizations of quasi-Chebyshev subspaces in
Banach spaces. Moreover, we present a characterization of the spaces in which all
closed linear subspaces are quasi-Chebyshev. � 2000 Academic Press
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1. INTRODUCTION AND PRELIMINARIES

Let X be a (complex or real) Banach space and let W be a linear subspace
of X. A point y0 # W is said to be a best approximation for x # X if

&x& y0&=d(x, W )=inf[&x& y& : y # W]

If each x # X has at least one best approximation in W, then W is called
a proximinal subspace of X. If each x # X has a unique best approximation
in W, then W is called a Chebyshev subspace of X. For x # X, put

PW (x)=[ y # W : &x& y&=d(x, W)]

It is clear that PW (x) is a bounded, closed and convex subset of X. For
an arbitrary non-empty covex set A in X, we shall denote by

l (A)=[:x+(1&:) y : x, y # A; : is scalar]
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the linear manifold spanned by A. For every fixed y # A the set l (A)& y=
[x& y : x # l (A)] is a linear subspace of X, satisfying l (A& y)=l (A)& y.
The dimension of A is defined by dim A=dim l (A). Then, for every y # A
we have

dim A=dim l (A)=dim[l (A)& y]=dim l (A& y)=dim(A& y)

(For more details see [8].)
We say that W is a pseudo-Chebyshev subspace of X if PW (x) is a non-

empty and finite-dimensional set in X for each x # X.
In particular, every finite-dimensional linear subspaceand every k-Chebyshev

subspace (k=0, 1, 2, ...) is pseudo-Chebyshev(for more details see [4, 8]).
In [1] P. D. Morris has constructed examples of pseudo-Chebyshev sub-
spaces of finite-codimensional of l�

R which are not Chebyshev subspaces.
In [7] there is a characterization of the spaces in which all closed linear
subspaces are pseudo-Chebyshev.

A linear subspace W of a Banach space X is called quasi-Chebyshev if
PW (x) is a non-empty and compact set in X for every x # X (see [2]). In
[2] it is shown that every pseudo-Chebyshev subspace is quasi-Chebyshev,
and given an example in which the converse is not true. For more details
about quasi-Chebyshev subspaces see [2].

Let X* be the dual space of the Banach space X. For f # X*, put

Mf=[x # X : f (x)=& f &, &x&=1]

It is clear that Mf is a bounded and closed subset of X.
We conclude this section by a list of known lemmas needed in the proof

of the main results.

Lemma 1.1 [8, Theorem 1.1]. Let X be a normed linear space, W a
linear subspace of X, x # X"W� and y0 # W. Then y0 # PW (x) if and only if
there exists f # X* such that & f &=1, f | W=0 and f (x& y0)=&x& y0 &.

Lemma 1.2 [5; 8, Theorems 1 and 4]. Let X be a normed linear space,
W a linear subspace of X, x # X"W� and y0 # W. Then y0 # PW (x) if and only
if

&x& y0 &W==&x& y0&

where &x&W ==sup[ | f (x)| : & f &�1, f # W =].

Lemma 1.3 [6, 8]. Let X be a normed linear space, W a linear subspace
of X, x # X"W� and F a subset of W. Then F is a subset of PW (x) if and only
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if there exists f # X* such that & f &=1, f | W=0 and f (x& y)=&x& y& for
every y # F.

Lemma 1.4 [2, Theorem 2.4]. Let X be a Banach space and let W be a
proximinal subspace of X. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) There do not exist f # X*, x0 # X and a sequence [xn]n�1 in X
without a convergent subsequence and with x0&xn # W (n=1, 2, ...) such
that & f &=1, f | W=0 and f (xn)=&xn & for all n=0, 1, 2, ... .

(3) There do not exist f # X*, x0 # X and a sequence [gn]n�1 in W
without a convergent subsequence such that & f &=1, f | W=0 and f (x0)=
&x0&=&x0& gn & for all n=1, 2, ... .

2. MAIN RESULTS

Now, we are ready to state and prove our main results. In the following
we give various characterizations of quasi-Chebyshev subspaces in Banach
spaces. First, we use Lemma 1.4 and give another proof of a result in [3].

Theorem 2.1. Let X be a Banach space and let W be a proximinal sub-
space of X with codimension one. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) Each sequence [ yn]n�1 in X with &yn&=1 and 0 # PW ( yn)
(n=1, 2, ...) has a convergent subsequence.

Proof. See Theorem 2.5 below.

In the following, we need the following definitions.

Definition 2.2. A linear subspace W of a Banach space X is said to
have the property (C ), if for every f # W* the set

Ef =[ f� # X*: f� | W= f, & f� &=& f &]

is non-empty and compact in X*. (Note that Ef is convex for every
f # W*.)

Definition 2.3. Let X be a Banach space. A linear subspace M of X*
is said to have the property (C*), if for every x # X"=M the set

Dx =[ y # X : f ( y)= f (x) for all f # M; &y&=&x&M]
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is non-empty and compact in X, where

=M=[x # X : f (x)=0 for all f # M]

and

&x&M=sup[ | f (x)| : & f &�1, f # M]

(Note that Dx is convex for every x # X"=M.)

Theorem 2.4. Let X be a Banach space and let W be a proximinal subspace
of X. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) W= has the property (C*).

If the quotient space X�W is reflexive, then the above statements are equiv-
alent to the following:

(3) For every 4 # (W=)* the set

S4 =[ y # X : f ( y)=4( f ) for all f # W =; &y&=&4&]
is non-empty and compact in X. (Note that S4 is convex for every
4 # (W=)*. Also, (3) implies (1) and (2) without the reflexivity of X�W.)

Proof. (1) O (2). Suppose that (2) does not hold. Since W is proximinal
in X, by [8; Theorem 2.1] Dx is non-empty for each x # X. Then there exits
x0 # X"W such that Dx0

is not compact. It follows that there exists a
sequence [ yn]n�1 in X without a convergent subsequence such that

f ( yn)= f (x0), n=1, 2, ... ; f # W=,

and

&yn&=&x0 &W= , n=1, 2, ... .

Then we have f ( yn& y1)=0 for all f # W= and all n�1. Therefore,
yn& y1 # =(W=)=W (n=1, 2, ...), because W is a closed subspace of X.
Let y0= y1 and gn= yn+1& y1 , n=1, 2, ... . Thus, y0 # X"W, [gn]n�1 is a
sequence in W without a convergent subsequence and

&y0& gn &=&yn+1&=&x0&W =

=sup[ | f (x0)| : & f &�1, f # W=]

=sup[ | f ( y1)| : & f &�1, f # W=]

=&y0&W==&y0& gn&W =,
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for all n=1, 2, ... . It follows from Lemma 1.2 that gn # PW ( y0) for
n=1, 2, ... . Therefore, PW ( y0) is not compact and hence W is not quasi-
Chebyshev in X. Thus, (1) implies (2).

(2) O (1). Assume if possible that W is not quasi-Chebyshev in X.
Since W is proximinal in X, by Lemma 1.4 (the implication (1) O (3)) for
a suitable f0 # X* and x0 # X"W there exists a sequence [gn]n�1 in W
without a convergent subsequence such that & f0 &=1, f0 | W=0 and
f0(x0)=&x0&=&x0& gn&, n=1, 2, ... . Since x0 # X"W and

f0(x0& gn)= f0(x0)=&x0& gn&,

for all n=1, 2, ..., it follows from Lemma 1.3 that gn # PW (x0) (n=1, 2, ...).
Then, by Lemma 1.2, we have

&x0& gn&=&x0& gn &W = ,

for all n=1, 2, ... .
Let yn=x0& gn , n=1, 2, ... . Therefore, [ yn]n�1 is a sequence in X

without a convergent subsequence. Now, let f # W= be arbitrary. Then we
have

f ( yn)= f (x0& gn)= f (x0), n=1, 2, ...,

and

&yn&=&x0& gn&=&x0& gn&W==&x0&W= ,

for all n=1, 2, ... . It follows that yn # Dx0
for all n�1. Thus, W= does not

have the property (C*). Hence, (2) implies (1).

(2) O (3). Assume that we have (2) and that the quotient space X�W
is reflexive. Now, suppose that (3) does not hold. Since W is proximinal
and X�W is reflexive, by [8; Theorem 2.1] S4 is non-empty for every
4 # (W=)*. Then for a suitable 40 # (W =)*, S40

is not compact. It follows
that there exists a sequence [ yn]n�1 in X without a convergent sub-
sequence such that

f ( yn)=40( f ), n=1, 2, ...; f # W=,

and

&yn&=&40 &, n=1, 2, ... .

Now, let x0= y1 # X. Then we have

f ( yn)= f (x0), n=1, 2, ...; f # W=,
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and

&yn&=&40&=sup[ |40( f )| : & f &�1, f # W=]

=sup[ | f ( yn)| : & f &�1, f # W =]

=sup[ | f (x0)| : & f &�1, f # W=]

=&x0 &W= ,

for all n=1, 2, ... . It follows that yn # Dx0
for all n�1. Then W= does not

have the property (C*). Hence, (2) implies (3).

(3) O (1). Suppose that W is not quasi-Chebyshev in X. Then by the
proof (2) O (1) we can find x0 # X"W and a sequence [ yn]n�1 in X
without a convergent subsequence such that

f ( yn)= f (x0), n=1, 2, ... ; f # W=,

and

&yn&=&x0 &W=, n=1, 2, ... .

Now, define 40 : W = � C by 40( f )= f (x0) for every f # W=. It follows
that 40 # (W=)*, f ( yn)=40( f ) (n=1, 2, ...; f # W =) and &40&=&x0&W=

=&yn& fo all n=1, 2, ... . Then yn # S40
for n=1, 2, ... . Therefore, (3) does

not hold. Hence (3) implies (1), which completes the proof. K

Theorem 2.5. Let X be a Banach space and let W be a proximinal sub-
space of X. Then the following are equivalent:

(1) W is quasi-Chebyshev in X.

(2) In every linear subspace Yx /X (x # X"W) of the form Yx=
W�(x) each sequence [ yn]n�1 in Yx with &yn&=1 and 0 # PW ( yn)
(n=1, 2, ...) has a convergent subsequence.

(3) For every linear functional 0{. # (Yx)* (x # X"W) with the property
W=[ y # Yx : .( y)=0], the set M.=[ y # Yx : .( y)=&.&, &y&=1] is
non-empty and compact in Yx .

(4) W= has the property (C*).

If the quotient space X�W is reflexive, then the above statements are equiv-
alent to the following:

(5) For every 4 # (W=)* the set

S4 =[ y # X : f ( y)=4( f ) for all f # W =, &y&=&4&]

is non-empty and compact in X.
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Proof. (1) O (2). Suppose that W is quasi-Chebyshev in X. Then W is
quasi-Chebyshev in every Yx (x # X"W). Since codim W=1 in each Yx

(x # X"W), by Theorem 2.1 (the implication (1) O (2)) each sequence
[ yn]n�1 in Yx with &yn&=1 and 0 # PW ( yn) (n=1, 2, ...) has a convergent
subsequence. Hence we have (2).

(2) O (1). Assume that we have (2). Then codim W=1 in each sub-
space Yx /X (x # X"W) of the form Yx=W�(x). Since W is proxi-
minal in each Yx (x # X"W), it follows from Theorem 2.1 (the implication
(2) O (1)) that W is quasi-Chebyshev in each Yx (x # X"W). But,
X=�x # X"W Yx . It is clear that W is quasi-Chebyshev in X, and hence we
have (1).

(3) O (2). Suppose that (2) does not hold. Then for a suitable
Yx0

/X (x0 # X"W) of the form Yx0
=W�(x0) there exists a sequence

[ yn]n�1 in Yx0
without a convergent subsequence such that &yn &=1 and

0 # PW ( yn) (n=1, 2, ...). It follows that yn # Yx0
"W for all n=1, 2, ... .

Therefore, by Lemma 1.1, for each n=1, 2, ... there exists o{.n # (Yx0
)*

such that &.n &=1, .n | W=0 and .n( yn)=&yn&=1. Let .0=.1 and

W0=[ y # Yx0
: .0( y)=0].

Since .0(x0){0, it follows that Yx0=W0 �(x0) . But, we have
Yx0

=W�(x0) and W is a subset of W0 . Then W=W0 . Thus, we have
0{.0 # (Yx0)* with the property W=[ y # Yx0 : .0( y)=0]. Now, since
.n | W=0 (n=1, 2, ...), there exists a non-zero scalar :n such that
.n=:n.0 (n=1, 2, ...). But, we have &.n &=1 for all n=1, 2, ... . Then
|:n |=1 (n=1, 2, ...). We may assume without loss of generality that
:n � :0 for some scalar :0 {0 (|:0 |=1).

Let xn=:n yn , n=1, 2, ... . Now, since :n � :0 {0, it follows that
[xn]n�1 is a sequence in Yx0

without a convergent subsequence, &xn&=1
(n=1, 2, ...), and

.0(xn)=.0(:nyn)=:n.0( yn)=.n( yn)=1=&.0 &,

for all n=1, 2, ... .
Therefore, xn # M.0

(n=1, 2, ...). Then M.0
is not compact and (3) does

not hold. Hence, (3) implies (2).

(4) O (3). Suppose that (3) does not hold. Since W is proximinal in
X, by [8; Theorem 2.1] for every 0{. # (Yx)* (x # X"W) with the
property W=[ y # Yx : .( y)=0], M. is non-empty. Then for a suitable
Yx0 /X (x0 # X"W) there exists 0{.0 # (Yx0)* with the property W=
[ y # Yx0

: .0( y)=0], M.0
is not compact. It follows that there exists

a sequence [ yn]n�1 in Yx0 without a convergent subsequence such that
&yn&=1 and .0( yn)=&.0& (n=1, 2, ...).
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Since yn # Yx0
"W (n=1, 2, ...), for each n=1, 2, ... there exist a non-zero

scalar *n and an wn # W such that yn=wn+*n x0 (note that Yx0
=W�

(x0) ). But, we have .0( yn)=&.0 & (n=1, 2, ...) and .0(x0){0. Then
*n=&.0 & (.0(x0))&1 :=*0 for all n=1, 2, ... . (Note that *0 {0.)

Now, let xn=*&1
0 yn , n=1, 2, ... . It follows that [xn]n�1 is a sequence

in Yx0
without a convergent subsequence, |.0(xn)|=&.0& &xn& and xn&

x0 # W for all n=1, 2, ... . Let f # W= be arbitrary. Since xn&x0 # W
(n=1, 2, ...), f (xn)= f (x0) and .0(xn)=.0(x0) for all n=1, 2, ... (note that
.0 | W=0).

Let �0=(&.0&)&1 .0 . Then we have &�0&=1, �0 | W=0, �0(xn)=
�0(x0) and |�0(xn)|=&xn& (n=1, 2, ...). Therefore,

&xn&=|�0(xn)|=|�0(x0)|

�sup[ | f (x0)| : & f &�1, f # W=]=&x0&W = ,

for all n=1, 2, ... .
On the other hand,

&x0&W==sup[ | f (x0)| : & f &�1, f # W =]

=sup[ | f (xn)| : & f &�1, f # W=]�&xn&,

for all n=1, 2, ... . Then &xn&=&x0&W= , n=1, 2, ... . Since f (xn)= f (x0),
n=1, 2, ... ; f # W=, it follows that xn # Dx0

(n=1, 2, ...) and hence W =

does not have the property (C*). Thus, (4) implies (3).
The equivalences (1) � (4) � (5) have been proved in Theorem 2.4,

which completes the proof. K

Now, we shall obtain from Theorem 2.5 the following corollary on quasi-
Chebyshev subspaces of Banach spaces.

Corollary 2.6. Let X be a reflexive Banach space. Then all closed
linear subspaces of X are quasi-Chebyshev if and only if for every f # X* and
every closed linear subspace W of X with f | W is non-zero, the set Mg=
[ y # W : g( y)=&g&, &y&=1] is non-empty and compact, where g= f | W.

Proof. Assume that all closed linear subspaces of X are quasi-
Chebyshev. Let f # X* be arbitrary and let W be an arbitrary closed linear
subspace of X such that f | W is non-zero. Let g= f | W. Since g{0, there
exists x0 # W such that g(x0){0.

Now, let

W0=[ y # W : g( y)=0] and Yx0
=W0 �(x0) .

94 H. MOHEBI



Then we have W=Yx0
and by hypothesis W0 is a quasi-Chebyshev sub-

space of X. Since g # W*=(Yx0
)* (x0 # X"W0) with the property W0=

[ y # Yx0
: g( y)=0] and W0 is quasi-Chebyshev in X, by Theorem 2.5 (the

implication 1) O 3)) the set Mg is non-empty and compact in Yx0
=W.

Conversely, suppose that for every f # X* and every closed linear sub-
space W of X with f | W is non-zero, the set Mg is non-empty and compact,
where g= f | W. Let W be an arbitrary closed linear subspace of X.

Now, let x # X"W be arbitrary and Yx=W�(x). It is clear that Yx is
a closed linear subspace of X. Let 0{. # (Yx)* be arbitrary with the
property

W=[ y # Yx : .( y)=o].

Therefore, by Hahn-Banach Theorem, there exists a linear functional
f # X* such that 0{.= f | Yx . It follows, by hypothesis, that M. is a non-
empty and compact set in Yx . But, we have X is reflexive. Then by [8;
Corollary 2.4] W is proximinal in X. Hence by Theorem 2.5 (the implica-
tion 3) O 1)) W is quasi-Chebyshev in X, which completes the proof. K
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